Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Planta ; 259(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448635

RESUMO

MAIN CONCLUSION: A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.


Assuntos
Dianthus , Oxigenases , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Melhoramento Vegetal , Eletroporação , Ribonucleoproteínas
2.
Sci Rep ; 14(1): 5471, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443610

RESUMO

Plant community assembly is the outcome of long-term evolutionary events (evident as taxonomic diversity; TD) and immediate adaptive fitness (functional diversity; FD); a balance expected to shift in favour of FD in 'harsh' habitats under intense selection pressures. We compared TD and FD responses along climatic and edaphic gradients for communities of two species (Dianthus pseudocrinitus and D. polylepis) endemic to the montane steppes of the Khorassan-Kopet Dagh floristic province, NE Iran. 75 plots at 15 sites were used to relate TD and FD to environmental gradients. In general, greater TD was associated with variation in soil factors (potassium, lime, organic matter contents), whereas FD was constrained by aridity (drought adaptation). Crucially, even plant communities hosting different subspecies of D. polylepis responded differently to aridity: D. polylepis subsp. binaludensis communities included a variety of broadly stress-tolerant taxa with no clear environmental response, but TD of D. polylepis subsp. polylepis communities was directly related to precipitation, with consistently low FD reflecting a few highly specialized stress-tolerators. Integrating taxonomic and functional diversity metrics is essential to understand the communities hosting even extremely closely related taxa, which respond idiosyncratically to climate and soil gradients.


Assuntos
Dianthus , Rosaceae , Benchmarking , Evolução Biológica , Secas , Solo
3.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257252

RESUMO

Dianthus superbus L. has been extensively studied for its potential medicinal properties in traditional Chinese medicine and is often consumed as a tea by traditional folk. It has the potential to be exploited in the treatment of inflammation, immunological disorders, and diabetic nephropathy. Based on previous studies, this study continued the separation of another subfraction of Dianthus superbus and established reversed-phase/reversed-phase and reversed-phase/hydrophilic (RPLC) two-dimensional (2D) high-performance liquid chromatography (HPLC) modes, quickly separating two C-glycosylflavones, among which 2″-O-rhamnosyllutonarin was a new compound and isomer with 6‴-O-rhamnosyllutonarin. This is the first study to investigate the effects of 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin on cellular glucose metabolism in vitro. First, molecular docking was used to examine the effects of 2″-O-rhamnosyllutonarin and 6″-O-rhamnosyllutonarin on AKT and AMPK; these two compounds exhibited relatively high activity. Following this, based on the HepG2 cell model of insulin resistance, it was proved that both of the 2″-O-rhamnosyllutonarin and 6‴-O-rhamnosyllutonarin demonstrated substantial efficacy in ameliorating insulin resistance and were found to be non-toxic. Simultaneously, it is expected that the methods developed in this study will provide a basis for future studies concerning the separation and pharmacological effects of C-glycosyl flavonoids.


Assuntos
Dianthus , Resistência à Insulina , Simulação de Acoplamento Molecular , Metabolismo dos Carboidratos , Glucose
4.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179647

RESUMO

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Senescência Vegetal , Metilação de DNA/genética , Aminoácidos/metabolismo , Flores/genética , Flores/metabolismo
5.
J Exp Bot ; 75(5): 1601-1614, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988617

RESUMO

Increasing evidence supports a major role for abiotic stress response in the success of plant polyploids, which usually thrive in harsh environments. However, understanding the ecophysiology of polyploids is challenging due to interactions between genome doubling and natural selection. Here, we investigated physiological responses, gene expression, and the epiphenotype of two related Dianthus broteri cytotypes-with different genome duplications (4× and 12×) and evolutionary trajectories-to short extreme temperature events (42/28 °C and 9/5 °C). The 12× cytotype showed higher expression of stress-responsive genes (SWEET1, PP2C16, AI5L3, and ATHB7) and enhanced gas exchange compared with 4×. Under heat stress, both ploidies had greatly impaired physiological performance and altered gene expression, with reduced cytosine methylation. However, the 12× cytotype exhibited remarkable physiological tolerance (maintaining gas exchange and water status via greater photochemical integrity and probably enhanced water storage) while down-regulating PP2C16 expression. Conversely, 4× D. broteri was susceptible to thermal stress despite prioritizing water conservation, showing signs of non-stomatal photosynthetic limitations and irreversible photochemical damage. This cytotype also presented gene-specific expression patterns under heat, up-regulating ATHB7. These findings provide insights into divergent stress response strategies and physiological resistance resulting from polyploidy, highlighting its widespread influence on plant function.


Assuntos
Dianthus , Dianthus/genética , Temperatura , Poliploidia , Água , Expressão Gênica
6.
Plant Biotechnol J ; 21(11): 2307-2321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626478

RESUMO

Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Flores , Etilenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Cell Rep ; 42(9): 1503-1516, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452219

RESUMO

KEY MESSAGE: We introduced the candidate gene DsHSP70 into Arabidopsis thaliana, resulting in male gametophyte sterility and abnormal degeneration of sepals and petals. Cytoplasmic male sterility (CMS) is a useful tool for hybrid production. However, the regulatory mechanism of CMS in Dianthus spiculifolius remains unclear. In this study, we investigated whether male-sterile line of D. spiculifolius has a malformed tapetum and fails to produce normal fertile pollen. RNA sequencing technology was used to compare the gene expression patterns of the D. spiculifolius male-sterile line and its male fertility maintainer line during anther development. A total of 12,365 differentially expressed genes (DEGs) were identified, among which 1765 were commonly expressed in the S1, S2 and S3 stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these DEGs were mainly involved in oxidation-reduction processes, signal transduction and programmed cell death. Additionally, weighted correlation network analysis (WGCNA) showed that three modules may be related to male sterility. A putative regulatory pathway for the male sterility traits was constructed based on the reproductive development network. After introducing the candidate DsHSP70 gene into Arabidopsis thaliana, we found that overexpressing plants showed anther abortion and shorter filaments, and accompanied by abnormal degeneration of sepals and petals. In summary, our results identified potential candidate genes and pathways related to CMS in D. spiculifolius, providing new insights for further research on the mechanism of male sterility.


Assuntos
Arabidopsis , Dianthus , Infertilidade Masculina , Masculino , Humanos , Dianthus/genética , Infertilidade das Plantas/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Flores/genética
8.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298450

RESUMO

Carnations are one of the most popular ornamental flowers in the world with varied flower colors that have long attracted breeders and consumers alike. The differences in carnation flower color are mainly the result of the accumulation of flavonoid compounds in the petals. Anthocyanins are a type of flavonoid compound that produce richer colors. The expression of anthocyanin biosynthetic genes is mainly regulated by MYB and bHLH transcription factors. However, these TFs have not been comprehensively reported in popular carnation cultivars. Herein, 106 MYB and 125 bHLH genes were identified in the carnation genome. Gene structure and protein motif analyses show that members of the same subgroup have similar exon/intron and motif organization. Phylogenetic analysis combining the MYB and bHLH TFs from Arabidopsis thaliana separates the carnation DcaMYBs and DcabHLHs into 20 subgroups each. Gene expression (RNAseq) and phylogenetic analysis shows that DcaMYB13 in subgroup S4 and DcabHLH125 in subgroup IIIf have similar expression patterns to those of DFR, ANS, and GT/AT, which regulate anthocyanin accumulation, in the coloring of carnations, and in red-flowered and white-flowered carnations, DcaMYB13 and DcabHLH125 are likely the key genes responsible for the formation of red petals in carnations. These results lay a foundation for the study of MYB and bHLH TFs in carnations and provide valuable information for the functional verification of these genes in studies of tissue-specific regulation of anthocyanin biosynthesis.


Assuntos
Antocianinas , Dianthus , Humanos , Antocianinas/metabolismo , Dianthus/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
9.
BMC Plant Biol ; 23(1): 316, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316783

RESUMO

With the rising demand for new cultivars of carnation, efficient transformation protocols are needed to enable the bioengineering of new traits. Here, we established a novel and efficient Agrobacterium-mediated transformation system using callus as the target explant for four commercial carnation cultivars. Leaf-derived calli of all cultivars were inoculated with Agrobacterium tumefaciens strain LBA4404 containing the plasmid pCAMBIA 2301 harboring genes for ß-glucuronidase (uidA) and neomycin phosphotransferase (nptII). Polymerase chain reaction (PCR) and histochemical assays confirmed the presence of uidA and ß-glucuronidase (GUS), respectively in transgenic shoots. The effect on transformation efficiency of medium composition and the presence of antioxidants during inoculation and co-cultivation was investigated. The transformation efficiency was increased in Murashige and Skoog (MS) medium lacking KNO3 and NH4NO3, and also in MS medium lacking macro and micro elements and Fe to 5% and 3.1% respectively, compared to 0.6% in full-strength medium. Transformation efficiency was increased dramatically to 24.4% across all carnation cultivars by the addition of 2 mg/l melatonin to nitrogen-depleted MS medium. Shoot regeneration was also doubled in this treatment. The establishment of this efficient and reliable transformation protocol can advance the development of novel carnation cultivars through molecular breeding approaches.


Assuntos
Dianthus , Melatonina , Agrobacterium tumefaciens/genética , Glucuronidase , Nitrogênio
10.
Phytochemistry ; 212: 113710, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178942

RESUMO

Six undescribed C27-phytoecdysteroid derivatives, named superecdysones A-F, and ten known analogs were extracted from the whole plant of Dianthus superbus L. Their structures were identified by extensive spectroscopy, mass spectrometric methods, chemical transformations, chiral HPLC analysis, and the single-crystal X-ray diffraction analysis. Superecdysones A and B possess a tetrahydrofuran ring in the side chain and superecdysones C-E are rare phytoecdysones containing a (R)-lactic acid moiety, whereas superecdysone F is an uncommon B-ring-modified ecdysone. Notably, based on the variable temperature (from 333 K to 253 K) NMR experiments of superecdysone C, the missing carbon signals were visible at 253 K and assigned. The neuroinflammatory bioassay of all compounds were evaluated, and 22-acetyl-2-deoxyecdysone, 2-deoxy-20-hydroxyecdysone, 20-hydroxyecdysone, ecdysterone-22-O-benzoate, 20-hydroxyecdysone-20,22-O-R-ethylidene, and acetonide derivative 20-hydroxyecdysterone-20, 22-acetonide significantly suppressed the LPS-induced nitric oxide generation in microglia cells (BV-2), with IC50 values ranging from 6.9 to 23.0 µM. Structure-activity relationships were also discussed. Molecular docking simulations of the active compounds confirmed the possible mechanism of action against neuroinflammations. Furthermore, none compounds showed cytotoxicity against HepG2 and MCF-7. It is the first report about the occurrence and anti-neuroinflammatory activity of the phytoecdysteroids in the genus Dianthus. Our findings demonstrated that ecdysteroids may be used as potential anti-inflammatory drugs.


Assuntos
Dianthus , Dianthus/química , Ecdisterona/farmacologia , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Ecdisteroides/farmacologia
11.
Rapid Commun Mass Spectrom ; 37(13): e9508, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072155

RESUMO

RATIONALE: Boron isotopes are a powerful tool for pH reconstruction in marine carbonates and as a tracer for fluid-mineral interaction in geochemistry. Microanalytical approaches based on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) often suffer from effects induced by the sample matrix. In this study, we investigate matrix-independent analyses of B isotopic ratios and apply this technique to cold-water corals. METHODS: We employ a customized 193 nm femtosecond laser ablation system (Solstice, Spectra-Physics) coupled to a MC-ICP-MS system (Nu Plasma II, Nu Instruments) equipped with electron multipliers for in situ measurements of B isotopic ratios (11 B/10 B) at the micrometric scale. We analyzed various reference materials of silicate and carbonate matrices using non-matrix matched calibration without employing any correction. This approach was then applied to investigate defined increments in coral samples from a Chilean fjord. RESULTS: We obtained accurate B isotopic ratios with a reproducibility of ±0.9‰ (2 SD) for various reference materials including silicate glasses (GOR132-G, StHs6/80-G, ATHO-G and NIST SRM 612), clay (IAEA-B-8) and carbonate (JCp-1) using the silicate glass NIST SRM 610 as calibration standard, which shows that neither laser-induced nor ICP-related matrix effects are detectable. The application to cold-water corals (Desmophyllum dianthus) reveals minor intra-skeleton variations in δ11 B with average values between 23.01‰ and 25.86‰. CONCLUSIONS: Our instrumental set-up provides accurate and precise B isotopic ratios independently of the sample matrix at the micrometric scale. This approach opens a wide field of application in geochemistry, including pH reconstruction in biogenic carbonates and deciphering processes related to fluid-mineral interaction.


Assuntos
Antozoários , Dianthus , Terapia a Laser , Animais , Boro/análise , Espectrometria de Massas/métodos , Antozoários/química , Reprodutibilidade dos Testes , Isótopos/análise , Carbonatos/análise , Lasers , Silicatos
12.
Plant Physiol Biochem ; 198: 107698, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060867

RESUMO

Carnation (Dianthus caryophyllus L.) is a floral crop that is highly valuable commercially. However, high temperatures adversely affect its growth and the quality of its cut flowers. Melatonin (MT) is a indole substance that can mitigate plant damage under heat stress. In this study, the leaves of carnation seedlings were sprayed with different concentrations of MT before exposure to high temperature. The indices of growth, physiological and chlorophyll fluorescence were measured and analyzed by the membership function method. The results showed that treatment with 100 µM MT was the most effective at ameliorating damage on carnation. We then analyzed the effects of 100 µM MT pretreatment on carnation at different time points of heat stress and found that this concentration of MT ameliorated the damage caused by heat stress, increased the content of photosynthetic pigments, enhanced the performance of photosystem II and improved photosynthesis. In addition, MT also reduced cell damage and lipid peroxidation, increased the activities of antioxidant enzymes and regulated the accumulation of osmotic substances in carnation. Moreover, MT increased the fresh/dry weight of stems and roots, promoted the opening of stomata, and protected the integrity of chloroplast structure of carnation. Compared with heat stress, pre-spraying with MT significantly down-regulated the transcription of a chlorophyll degradation gene and up-regulated the transcription of stress-related genes. Overall, this study provides a theoretical foundation for the mitigation of the adverse effects of exogenous MT under heat stress and proposes beneficial implications for the management of other plants subjected to global warming.


Assuntos
Dianthus , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Clorofila/metabolismo
13.
PLoS One ; 18(3): e0281717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881583

RESUMO

Postharvest characteristics, such as vase life and antimicrobial preservation of commercial cut flowers are some of the major determinants of their market value worldwide. Extending vase life while restricting microbial proliferation in cut flowers is an important challenge faced by floricultural researchers. This study evaluates the preservative efficiency of different essential oils used as additive solutions in prolonging the longevity of carnation cv. Madam Collette cut flowers and restricting microbial growth in them. Cut carnations were treated with four essential oils: geranium, thyme, marjoram, and anise at concentrations of 0, 25, 50, and 75 mg/L. While treatment with all the essential oils prolonged the longevity of the cut flowers, thyme and marjoram oils were most effective at concentrations of 50 mg/L each. The vase life of thyme-treated and marjoram-treated carnations almost doubled to 18.5 days and 18.25 days, respectively, as compared to untreated flowers. Treatment with essential oils also led to an increase in water uptake by the cut flowers enhancing their relative water content (RWC). It also restricted the sharp decline of chlorophyll and total carbohydrates content of the flowers during their vase life period. Morphological features of the stem bases of treated and untreated carnations were analyzed using scanning electron microscopy (SEM). The stem ends of geranium and anise-treated carnations showed less bacterial growth than untreated flowers and no apparent xylem blockage was observed even after nine days of treatment. Furthermore, the presence of essential oils also reduced lipid peroxidation and free radical generation as observed by malondialdehyde (MDA) and H2O2 quantification, respectively. It also led to increased production of total phenols leading to enhanced membrane stability. The use of thyme and marjoram essential oils as antimicrobial preservatives and green antioxidants appears to have promising applications in both the industrial and scientific sectors.


Assuntos
Apiaceae , Dianthus , Geranium , Óleos Voláteis , Óleos Voláteis/farmacologia , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Carboidratos da Dieta
14.
Plant Physiol Biochem ; 196: 982-992, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36893613

RESUMO

Nano-selenium (nano-Se) and melatonin (MT) applications confirmed to boost plant growth and resistance. The mechanism of various ratios of nano-Se and MT foliar application postpone the senescence of fresh cut carnation flowers and improve vase life remains unclear. In this study, a combined effect with nano-Se (nano-Se5, 5 mg/L) and MT(MT1, 1 mg/L) was preferable to the control, nano-Se, and MT treatment alone when it came to delaying flower senescence. They enhance the antioxidant ability of carnation flowers by lowering MDA and H2O2 levels, raising SOD and POD concentrations, and lowering procyanidins biosynthesis (catechins and epicatechin). Inducing the biosynthesis of hormonal compounds (salicylic acid, jasmonic acid, and abscisic acid), their combination also boosted the growth of carnations. Biofortification with nano-Se and MT substantially increased the amounts of key lignin biosynthesis pathway metabolites (L-phenylalanine, p-hydroxycinnamic acid, p-coumaric acid, perillyl alcohol, p-Coumaryl alcohol, and cinnamic acid), which may increase stem cellular thickness and facilitate water absorption and transmission. The study hypothesizes that nano-Se and MT synergistic applications act as a new efficient non-toxic preservative to extend the vase life and improve the decorative value of carnations.


Assuntos
Dianthus , Melatonina , Selênio , Melatonina/farmacologia , Flores/metabolismo , Peróxido de Hidrogênio , Antioxidantes/metabolismo
15.
Plant J ; 114(3): 636-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808165

RESUMO

Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Flores/genética , Flores/metabolismo
16.
Physiol Plant ; 175(2): e13883, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840510

RESUMO

Cuticular wax protects aerial plant tissues against uncontrolled water loss. To compare the differences among tissues, cultivars, and postharvest stages, we characterized the surface morphology, water permeability, and chemical composition of cuticular wax on the leaf, calyx, and petals of two carnation cultivars ('Master' and 'Lady green') at two postharvest stages. Obvious differences in these characteristics were found among tissues but not among cultivars or postharvest stages. The leaf surface was relatively smooth, whereas convex cells were observed on the petals. The mean minimum conductance of leaves was significantly higher than that of the calyx, followed by that of petals. It ranged between 8.8 × 10-4  m s-1 for 'Lady green' leaves at Stage II and 3.6 × 10-5  m s-1 for 'Master' petals at Stage I. Petal wax contained high concentrations of n-alkanes, whereas primary alcohols dominated in leaf wax. The weighted average chain length (ACL) was higher in petal wax than in leaf wax; it ranged from 19.6 in 'Lady green' leaves to 24.14 in 'Lady green' petals at Stage I. In conclusion, carnation petals are characterized by numerous convex cells on both the adaxial and abaxial surfaces, and their main cuticular wax components, alkanes, have a higher ACL than leaf cuticular wax, which contributes to their higher water barrier property. The results provide further evidence for the association between cuticular chemical composition and the physiological function of the cuticle in blocking water transpiration.


Assuntos
Dianthus , Água , Água/química , Ceras/química , Folhas de Planta/fisiologia , Permeabilidade , Alcanos/análise
17.
Plant Physiol ; 192(1): 546-564, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623846

RESUMO

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, the involvement of histone methylation in regulating petal senescence remains poorly understood. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during ethylene-induced petal senescence in carnation (Dianthus caryophyllus L.). H3K4me3 levels were positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DcACS1), and ACC oxidase (DcACO1), and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delayed ethylene-induced petal senescence in carnation, which was associated with the down-regulated expression of DcWRKY75, DcACO1, and DcSAG12, whereas overexpression of DcATX1 exhibited the opposite effects. DcATX1 promoted the transcription of DcWRKY75, DcACO1, and DcSAG12 by elevating the H3K4me3 levels within their promoters. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1, DcSAG12 and potentially other downstream target genes by regulating H3K4me3 levels, thereby accelerating ethylene-induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence processes.


Assuntos
Dianthus , Dianthus/genética , Dianthus/metabolismo , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Epigênese Genética , Etilenos/metabolismo
18.
Protoplasma ; 260(3): 807-819, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36264387

RESUMO

Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.


Assuntos
Arabidopsis , Dianthus , Syzygium , Termotolerância , Dianthus/genética , Dianthus/metabolismo , Syzygium/genética , Syzygium/metabolismo , Filogenia , Resposta ao Choque Térmico , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
19.
Ecology ; 104(4): e3970, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576452

RESUMO

Pathogen transmission mode is a key determinant of epidemiological outcomes. Theory shows that host density can influence the spread of pathogens differentially depending on their mode of transmission. Host density could therefore play an important role in determining the pathogen transmission mode. We tested theoretical expectations using floral arrays of the alpine carnation Dianthus pavonius in field experiments of spore dispersal of the anther-smut fungus, Microbotryum, by vector (pollinator)-based floral transmission and passive aerial transmission at a range of host densities. Pollinators deposited fewer spores per plant at high host density than at lower density (ranging from a 0.2-2 m spacing between plants), and vector-based spore deposition at higher densities declined more steeply with distance from diseased plant sources. In contrast, while aerial spore deposition declined with distance from the diseased source, the steepness of this decline was independent of host density. Our study indicates that the amount and distance of vector-based transmission are likely to be a nonmonotonic function of host density as a result of vector behavior, which is not readily encapsulated by fixed dispersal functions. We conclude that the spatial spread of pathogens by vectors is likely to be greater at lower and intermediate densities, whereas the spatial spread of aerially transmitted pathogens would be greater at high densities. These contrasting patterns could lead to differential importance of each transmission mode in terms of its contribution to subsequent infections across host densities.


Assuntos
Basidiomycota , Dianthus , Reprodução , Dianthus/microbiologia , Plantas , Doenças das Plantas
20.
Plant J ; 113(4): 698-715, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564995

RESUMO

Carnation (Dianthus caryophyllus L.) is one of the most famous and ethylene-sensitive cut flowers worldwide, but how ethylene interacts with other plant hormones and factors to regulate petal senescence in carnation is largely unknown. Here we found that a gene encoding WRKY family transcription factor, DcWRKY33, was significantly upregulated upon ethylene treatment. Silencing and overexpression of DcWRKY33 could delay and accelerate the senescence of carnation petals, respectively. Abscisic acid (ABA) and H2 O2 treatments could also accelerate the senescence of carnation petals by inducing the expression of DcWRKY33. Further, DcWRKY33 can bind directly to the promoters of ethylene biosynthesis genes (DcACS1 and DcACO1), ABA biosynthesis genes (DcNCED2 and DcNCED5), and the reactive oxygen species (ROS) generation gene DcRBOHB to activate their expression. Lastly, relationships are existed between ethylene, ABA and ROS. This study elucidated that DcWRKY33 promotes petal senescence by activating genes involved in the biosynthesis of ethylene and ABA and accumulation of ROS in carnation, supporting the development of new strategies to prolong the vase life of cut carnation.


Assuntos
Dianthus , Syzygium , Ácido Abscísico/metabolismo , Dianthus/genética , Espécies Reativas de Oxigênio/metabolismo , Syzygium/metabolismo , Etilenos/metabolismo , Flores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...